Boolean Expression Minimisation Using Boolean Algerbric Law and K-MAP.

Summary of Grouping Rules

  1. A group must only contain 1s, no Os

  2. A group can only be horizontal or vertical, not diagonal

  3. A group must contain $2 ^n 1s$ (1, 2, 4, 8, etc.)

  4. Each group should be as large as possible

  5. Groups may overlap

  6. Groups may wrap around a table

  7. Every 1must be in at least one group

Exercises:

For each of the following Truth Tables:

  1. Produce the Standard Sum of the Product Terms for the output S.

  2. Then reduce the Boolean Expression to a simpler expression using K-MAP and compare your answers to the provided soluation using Boolean algebric Laws.

Task-1:

ABS
001
011
101
110

Click for Solution

\(S = \overline{A}.\overline{B} + \overline{A}.B + A.\overline{B}\)

\(S = \overline{A}.(\overline{B} + B) + A.\overline{B}\)

\(S = \overline{A}.(1) + A.\overline{B}\)

\(S = \overline{A} + A.\overline{B}\)

\(S = \overline{A} +\) A}\(.\overline{B}\)

\(S = \overline{A} + \overline{B}\)


Task-2:

ABS
000
011
101
110

Click for Solution

\(S = \overline{A}B + A\overline{B}\)


Task-3

ABCS
0001
0011
0100
0110
1000
1010
1100
1110

Click for Solution

\(S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C\)

\(S = \overline{A}.\overline{B}.(\overline{C} + C)\)

\(S = \overline{A}.\overline{B}.(1)\)

\(S = \overline{A}.\overline{B}\)


Task-4

ABCS
0000
0011
0100
0111
1000
1011
1100
1111

Click for Solution

\(S = \overline{A}.\overline{B}.C + \overline{A}.B.C + A.\overline{B}.C + A.B.C\)

\(S = \overline{B}.C.(\overline{A} + A) + B.C.(\overline{A} + A)\)

\(S = \overline{B}.C.(1) + B.C.(1)\)

\(S = \overline{B}.C + B.C\)

\(S = C.(\overline{B} + B)\)

\(S = C.(1)\)

\(S = C\)


Task-5

ABCS
0001
0011
0100
0111
1000
1010
1100
1111

Click for Solution

\(S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + \overline{A}.B.C + A.B.C\)

\(S = \overline{A}.\overline{B}.(\overline{C} + C) + B.C.(\overline{A} + A)\)

\(S = \overline{A}.\overline{B}.(1) + B.C.(1)\)

\(S = \overline{A}.\overline{B} + B.C\)


Task-6

ABCS
0000
0010
0101
0111
1000
1011
1101
1111

Click for Solution

\(S = \overline{A}.B.\overline{C} + \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C} + A.B.C\)

\(S = \overline{A}.B.(\overline{C} + C) + A.\overline{B}.C + A.\overline{B}.(\overline{C} + C)\)

\(S = \overline{A}.B.(1) + A.\overline{B}.C + A.\overline{B}.(1)\)

\(S = \overline{A}.B + A.\overline{B}.C + A.\overline{B}\)

\(S = B.(\overline{A} + A) + A.\overline{B}.C\)

\(S = B.(1) + A.\overline{B}.C\)

\(S = B + A.\overline{B}.C\)

\(S = B + A.\) B \(.C\)

\(S = B + A.C\)


Task-7

ABCS
0000
0010
0100
0111
1001
1011
1101
1111

Click for Solution

\(S = \overline{A}.B.C + A.\overline{B}.\overline{C} + A.\overline{B}.C + A.B.\overline{C} + A.B.C\)

\(S = \overline{A}.B.C + A.\overline{B}.(\overline{C} + C) + A.B.(\overline{C} + C)\)

\(S = \overline{A}.B.C + A.\overline{B}.(1) + A.B.(1)\)

\(S = \overline{A}.B.C + A.\overline{B} + A.B\)

\(S = \overline{A}.B.C + A.(\overline{B} + B)\)

\(S = \overline{A}.B.C + A.(1)\)

\(S = \overline{A}.B.C + A\)

\(S =\) A \(B.C + A\)

\(S = B.C + A\)