Workshop on Boolean Algebra

The Workshop on Boolean Algebra is designed for you to practice Boolean equations and its laws.

Minimising Boolean Expressions

We can use Commutative, Associative, and Distributive Laws to manipulate Boolean expressions.


BOOLEAN LAWS

Commutative Laws

  • \(A + B \Longleftrightarrow B + A\)

  • \(A.B \Longleftrightarrow B.A\)

Associative Laws

  • \((A + B) + C \Longleftrightarrow A + (B + C)\)

  • \((A.B).C \Longleftrightarrow A.(B.C)\)

Distributive Laws

  • \(A + (B + C) \Longleftrightarrow (A + B) + (A + C)\)

  • \(A.(B.C) \Longleftrightarrow (A.B) + (A.C)\)

Axioms

The following rules (axioms) can also be used to minimise Boolean Expressions:

1.

  • A literal by itself cancels out any term that contains it (Absorption):

    • \(A + A.B + A.B.C \Longrightarrow A + \)A.B + A.B.C \(\Longrightarrow A\)

2.

  • A literal by itself knocks out its NOT'ed opposite that appears in any 'minterm' (Absorption):

    • \(\overline{A} + A.\overline{B} + A.C \Longrightarrow \overline{A} +\) A \(.\overline{B} +\) A \(.C \Longrightarrow \overline{A} + \overline{B} + C\)

Exercise: One

Minimise the following Boolean Expressions:

1. \(\hspace{1.75em}S = \overline{A} + A.C + \overline{B}.C\)


Click for Solution

\(S = \overline{A} + \)A\(.C + \overline{B}.C\)

\(S = \overline{A} + C +\) B.C

\(S = \overline{A} + C\)


2. \(\hspace{1.75em}S = A.C + A.B.C + A.B.\overline{C}\)


Click for Solution

\(S = A.C + A.B.(C + \overline{C})\)

\(S = A.C + A.B.(1)\)

\(S = A.C + A.B\)


3. \(\hspace{1.75em}S = \overline{B} + A.B + A.\overline{B}.C\)


Click for Solution

\(S = \overline{B} + A.\) B \(+\) A.B.C

\(S = \overline{B} + A\)


4. \(\hspace{1.75em}S = \overline{A}.\overline{B}.\overline{C} + A.\overline{B}.\overline{C} + A.C\)


Click for Solution

\(S = \overline{B}.\overline{C}.(A + \overline{A}) + A.C\)

\(S = \overline{B}.\overline{C}.(1) + A.C\)

\(S = \overline{B}.\overline{C} + A.C\)


5. \(\hspace{1.75em}S = C + A.\overline{C} + B.C + A.B.C\)


Click for Solution

\(S = C + A.\)C \(+\) B.C \(+\) A.B.C

\(S = C + A\)


6. \(\hspace{1.75em}S = A.B.\overline{C} + A.B.C + A.\overline{B}.\overline{C} + A.\overline{B}.C + \overline{A}.B.C + \overline{A}.B.\overline{C}\)


Click for Solution

\(S = A.B.(\overline{C} + C) + A.\overline{B}.(\overline{C} + C) + \overline{A}.B.(C + \overline{C})\)

\(S = A.B.(1) + A.\overline{B}.(1) + \overline{A}.B.(1)\)

\(S = A.B + A.\overline{B} + \overline{A}.B\)

\(S = A.(B + \overline{B}) + \overline{A}.B\)

\(S = A.(1) + \overline{A}.B\)

\(S = A +\)A\(.B\)

\(S = A + B\)


7. \(\hspace{1.75em}S = A + B.C + \overline{A}.B.C\)


Click for Solution

\(S = A + B.C +\) A \(.B.C\)

\(S = A + B.C +\) B.C

\(S = A + B.C\)


8. \(\hspace{1.75em}S = B + \overline{A}.B.\overline{C} + A.B.\overline{C} + \overline{A}.C\)


Click for Solution

\(S = B +\) A.B.C \(+\) A.B.C \(+ \overline{A}.C\)

\(S = B + \overline{A}.C\)


Exercise: Two

For each of the following truth tables produce the standard Sum of the Product Terms for the output \(S\). The reduce the Boolean expression to a simpler expression using Boolean algebra.

1.

ABS
001
011
101
110

Click for Solution

\(S = \overline{A}.\overline{B} + \overline{A}.B + A.\overline{B}\)

\(S = \overline{A}.(\overline{B} + B) + A.\overline{B}\)

\(S = \overline{A}.(1) + A.\overline{B}\)

\(S = \overline{A} + A.\overline{B}\)

\(S = \overline{A} +\) A}\(.\overline{B}\)

\(S = \overline{A} + \overline{B}\)


2.

ABS
000
011
101
110

Click for Solution

\(S = \overline{A}B + A\overline{B}\)


3.

ABCS
0001
0011
0100
0110
1000
1010
1100
1110

Click for Solution

\(S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C\)

\(S = \overline{A}.\overline{B}.(\overline{C} + C)\)

\(S = \overline{A}.\overline{B}.(1)\)

\(S = \overline{A}.\overline{B}\)


4.

ABCS
0000
0011
0100
0111
1000
1011
1100
1111

Click for Solution

\(S = \overline{A}.\overline{B}.C + \overline{A}.B.C + A.\overline{B}.C + A.B.C\)

\(S = \overline{B}.C.(\overline{A} + A) + B.C.(\overline{A} + A)\)

\(S = \overline{B}.C.(1) + B.C.(1)\)

\(S = \overline{B}.C + B.C\)

\(S = C.(\overline{B} + B)\)

\(S = C.(1)\)

\(S = C\)


5.

ABCS
0001
0011
0100
0111
1000
1010
1100
1111

Click for Solution

\(S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + \overline{A}.B.C + A.B.C\)

\(S = \overline{A}.\overline{B}.(\overline{C} + C) + B.C.(\overline{A} + A)\)

\(S = \overline{A}.\overline{B}.(1) + B.C.(1)\)

\(S = \overline{A}.\overline{B} + B.C\)


6.

ABCS
0000
0010
0101
0111
1000
1011
1101
1111

Click for Solution

\(S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + \overline{A}.B.C + A.B.C\)

\(S = \overline{A}.\overline{B}.(\overline{C} + C) + B.C.(\overline{A} + A)\)

\(S = \overline{A}.\overline{B}.(1) + B.C.(1)\)

\(S = \overline{A}.\overline{B} + B.C\)


7.

ABCS
0000
0010
0101
0111
1000
1011
1101
1111

Click for Solution

\(S = \overline{A}.B.\overline{C} + \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C} + A.B.C\)

\(S = \overline{A}.B.(\overline{C} + C) + A.\overline{B}.C + A.\overline{B}.(\overline{C} + C)\)

\(S = \overline{A}.B.(1) + A.\overline{B}.C + A.\overline{B}.(1)\)

\(S = \overline{A}.B + A.\overline{B}.C + A.\overline{B}\)

\(S = B.(\overline{A} + A) + A.\overline{B}.C\)

\(S = B.(1) + A.\overline{B}.C\)

\(S = B + A.\overline{B}.C\)

\(S = B + A.\) B \(.C\)

\(S = B + A.C\)


8.

ABCS
0000
0010
0100
0111
1001
1011
1101
1111

Click for Solution

\(S = \overline{A}.B.C + A.\overline{B}.\overline{C} + A.\overline{B}.C + A.B.\overline{C} + A.B.C\)

\(S = \overline{A}.B.C + A.\overline{B}.(\overline{C} + C) + A.B.(\overline{C} + C)\)

\(S = \overline{A}.B.C + A.\overline{B}.(1) + A.B.(1)\)

\(S = \overline{A}.B.C + A.\overline{B} + A.B\)

\(S = \overline{A}.B.C + A.(\overline{B} + B)\)

\(S = \overline{A}.B.C + A.(1)\)

\(S = \overline{A}.B.C + A\)

\(S =\) A \(B.C + A\)

\(S = B.C + A\)